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Abstract

We have developed a new conservative method for solving the Vlasov equation without using any splitting technique.
Our goal is to maintain the positivity of the distribution function and to avoid un-physical oscillations which might lead to
numerical instabilities. Based on a finite volume conservative discretization of the conservative form of the Vlasov equation
we implemented a highly accurate second-order upwind scheme. In order to avoid un-physical oscillations and their pos-
sible numerical instability we apply a flux-limiter in the second order. We validate our new Vlasov solver by considering
standard cases of one-dimensional current-driven ion-acoustic instabilities solving a Vlasov–Ampère set of equations.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The investigation of resonant wave-particle interactions and of the resulting anomalous transport proper-
ties of collisionless plasmas requires a kinetic approach. Since binary collisions are negligible in collisionless
plasmas resonant wave-particle interactions are well described by the Vlasov equation, a Boltzmann equation
with a vanishing right hand side (r.h.s.). While linear and weakly (quasi-) linear analytical theories exist, non-
linear resonance phenomena have to be studied by means of numerical simulation techniques.

The most common approach to a numerical solution of the Vlasov equation is the particle-in-cell (PIC)
technique. PIC solvers approximately describe the plasma dynamics by a limited number of macro-particles,
pushed around in the self-consistent average electromagnetic fields. The fields are obtained by calculating
charge density and currents on an Eulerian grid. The main advantage of the PIC method is their (Lagrangian)
use of the characteristics of the hyperbolic PDE which are taken into account in form of the particle orbits.
This makes PIC codes easily extendable to multi-dimensional applications. The main disadvantage of the
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PIC-approach is the numerical noise due to the limited number of particles considered. With their finite par-
ticle number PIC codes practically cannot represent the details of the phase space evolution. For the practi-
cally available number of particles it is almost impossible to simulate details of fine scale resonance effects.
This makes the PIC method inadequate for the accurate analysis, e.g. of warm plasma instabilities. To describe
wave-particle resonances accurately one needs both a very high resolution of the phase space as well as a low
noise level comparable with the thermal plasma fluctuations.

An alternative way to investigate collisionless plasma phenomena is the direct integration of the partial dif-
ferential Vlasov equation. In contrast to PIC codes direct Lagrangian solvers of the Vlasov equation have fol-
low the deformation of the boundaries of phase space elements. In a Lagrangian Vlasov solver the distribution
function f(x,v,t) can be seen as the evolving density of an incompressible ‘‘phase fluid’’, which stays constant
within small subdomains. They were called ‘‘water bags’’ giving such method its name [1]. Due to Liouville�s
theorem the volume of each phase space element (subdomain) stays unchanged with time. Hence, if one would
be able to follow the motion of the boundaries of the ‘‘water bag’’ (phase space element) one could determine
the evolution of the distribution function. This can be done by advancing a sufficiently large number of points
along the ‘‘water bag’’ (subdomain) boundary. The boundary points evolve along the characteristics of the
Vlasov equation like particle trajectories in PIC solvers, both due to the action of the same average, self-con-
sistent electromagnetic fields. Unfortunately, because of the non-dissipative nature of the Vlasov-equation, the
subdomain boundary will spread out in the phase space becoming more and more filamented. To maintain an
accurate description of the subdomain deformation eventually more and more points along its boundary
would have to be considered. As a result already the simplest one-dimensional in space and velocity space
(1D1V) ‘‘water bag’’ Lagrangian method of solving the Vlasov equation is computationally very expensive.
Lagrangian Vlasov solvers are practically inapplicable to higher dimensional problems.

More appropriate for practical purposes (and widely used) are semi-Lagrangian solvers of the Vlasov equa-
tion. Semi-Lagrangian methods utilize the Lagrangian solution of the Vlasov equation based on the conser-
vation of the distribution function along the characteristics of the PDE. After each time step, however, they
have to interpolate the new function values back to Eulerian (fixed) grid points at which the fields are calcu-
lated [2]. This makes at least multi-dimensional semi-Lagrangian solvers very expensive. However, after split-
ting the Vlasov equation into a spatial and velocity space part, the two parts can be solved sequentially as
demonstrated first for a one-dimensional equation [3] and later for higher dimensions as well [4]. Time-
splitting reduces the semi-Lagrangian solution of the Vlasov equation to the solution of one-dimensional scalar
transport equations. This considerably increases the efficiency of the solution. The disadvantage of such frac-
tional splitting is the loss of synchronous, symmetric advancing of the distribution function in real and velocity
space.

Fully Eulerian grid methods do not have to interpolate [5]. Unfortunately, Eulerian methods suffer from
numerical diffusion due to truncation errors arising when calculating derivatives. While finite difference meth-
ods as the method of McCormac [6] break down near discontinuities, where the differential form of conser-
vation laws does not hold, the accuracy of Eulerian methods can be increased by applying conservative
solvers as done for a splitting approach in [7] (using a positive and flux conservative method – PFC). In order
to additionally maintain the synchronous advancement of fluxes to prepare a numerically accurate simulation
of relativistic problems including kinetic instabilities in hot plasmas, we were looking for a stable numerical
scheme which accurately solves the conservative Vlasov equation while strictly maintaining a positive value
of the distribution function and came to the conclusion that this goal could be reached by means of an unsplit
conservative finite volume discretization (FVM) method.

Here, in this paper, we present our utilization of an unsplit finite volume discretization based on the Vlasov
equation in its conservative form. Dividing the phase space into subdomains (cells) we consider the evolution
of each cell-averaged distribution function �f i;j with time. The distribution function values are modified at each
time step by the in- and outflow through the cell boundaries. This allows a conservative numerical solution,
since flows added to one cell are at the same time as subtracted from other, neighboring cells. This way the
total particle number and other moments of the distribution function are conserved. The main problem is
to determine an appropriate flux function that approximates the flows through the cell boundaries reasonably
well. For this purpose we utilize a cell-centered upwind scheme, well known in the computational fluid dynam-
ics (CFD). In contrast to a finite difference discretization, upwind schemes take into account the information
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about the flow direction contained in the Vlasov equation. Using the characteristics of the hyperbolic Vlasov
PDEs, they differentiate directly the flow direction. Following Godunov [8], this can be done by solving the
Riemann problem at the boundary between adjacent cells. While Godunov originally considered only first-
order upwind schemes, we utilized a second-order scheme. The extension to second-order accuracy requires
the incorporation of derivatives not only in the normal direction (as in one-dimensional or splitting algo-
rithms), but also to calculate mixed derivatives arising in the second order of the Taylor series expansion.
To avoid unstable oscillations, which can arise in higher order schemes near steep gradients (in case of the
Vlasov equation due to phase space filamentation), in computational fluid dynamics usually two types of
high-resolution schemes are used: flux limited transport (FLT) and flux corrected transport (FCT) schemes
[9,10]. Unsplit FCT schemes were applied to solve the Vlasov equation in [11]. In computational fluid dynam-
ics unsplit FLT schemes were proposed in [12–14]. In the spirit of these schemes we suggest a new flux limited
conservative method to solve the Vlasov equation. In any Eulerian-grid based scheme the information about
subgrid structures (filaments) is usually lost due to smoothing which leads to numerical loss of information.
We take care that our scheme increases the system�s entropy as little as possible, close to the grid based min-
imum level. To achieve this for a finite number of grid points we locally enhance the resolution in critical
phase-space regions by grid stretching.

In Section 2, we list the basic equation to be solved, in Section 3 we formulate both the integral and dif-
ferential conservative forms of the Vlasov equation, which we intend to solve numerically. In Section 4 we
present our unsplit finite volume discretization scheme. After discussing the optimum grid scaling in Section
5.1 we validate our method by solving the Vlasov equation for two typical 1D1V problems. We apply it in a
code consisting of a set of Vlasov–Ampère equations for initial and boundary conditions triggering (Section
5.2) and spontaneously exciting an ion-acoustic plasma instability (Section 5.3).

2. Basic equations

We intend to solve the Vlasov equation, which in the usually considered advection form, can be written as
ofa
ot

þ~v
ofa
or

þ ea
ma

~E þ 1

c
½~v�~B�

� �
ofa
o~v

¼ 0; ð1Þ
where a = i, e stands for ions and electrons, respectively. For a Vlasov code, the average electromagnetic fields
have to be determined self-consistently by solving Maxwell�s equations:
1

c
o~B
ot

¼ �r�~E;
1

c
o~E
ot

¼ r�~B� 4p
c
~j; ð2Þ

r �~E ¼ 4pq; r �~B ¼ 0; ð3Þ
where c is the speed of light. Charge density (q) as well as the current density ð~jÞ are moments of distribution
function, which can be calculated as
qð~r; tÞ ¼
X
a

ea

Z
fa d~v; ~jð~r; tÞ ¼

X
a

ea

Z
~vfa d~v. ð4Þ
We apply the normalization:
t ¼ t0x�1
pe ; v ¼ v0c; r ¼ r0

c
xpe

; ~E ¼ ~E
0 mecxpe

e
; ~B ¼ ~B

0 mecxpe

e
; ð5Þ
where xpe ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p�qejej=me

p
is the plasma frequency, with me being the electron mass, e the elementary charge

and �qe ¼ �qi (quasi-neutrality condition). Omitting in the following the apostrophes, Eqs. (1)–(3) obey the nor-
malized form
ofa
ot

þ~v
ofa
o~r

þ 1

Ca
ð~E þ ½~v�~B�Þ ofa

o~v
¼ 0; ð6Þ

o~B
ot

¼ �r�~E
o~E
ot

¼ r�~B�~J ; ð7Þ

r~E ¼ q; r~B ¼ 0; ð8Þ
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where Ce = �1 and Ci = Mi/me for electrons and ions, respectively, and ~J is the normalized current – in con-
trast to the j-index used for in Section 4.

3. Conservative Vlasov equation

Since our goal is the development of a conservative discretization scheme for a broad class of Vlasov prob-
lems, including relativistic, we have to start with the conservative form of the Vlasov equation. The latter
directly follows from the conservation of the number of particles in a six-dimensional phase space volume
X, which, in agreement with the Liouville theorem, can be expressed as (we omit the index a indicating differ-
ent particle species)
N ¼
Z
X
f ð~r;~v; tÞd3rd3v ¼

Z
X
f ð~R; tÞdX ¼ constant; ð9Þ
where ~R ¼ f~r;~vg is the six-dimensional phase space vector.
The total differentiation of Eq. (9) over time reveals
dN
dt

¼
Z
X

of ð~R; tÞ
ot

þ of

o~R
� d
~R
dt

( )
dX ¼

Z
X

of
ot

þrf ~U
� �

dX ¼ 0; ð10Þ
where $ is the six-dimensional phase-space derivative, defined as
r ¼ fr~r;r~vg ¼ o

o~r
;
o

o~v

� �
¼ o

o~R
ð11Þ
and ~U is the six-dimensional phase space flow vector defined as the total time derivative of ~R
~U ¼ f~U~r; ~U~vg ¼ d~R
dt

¼ f _~r; _~vg ¼ ~v;
~F
m

( )
. ð12Þ
For the second term in integrals (10) the Gauss theorem reveals
Z
X
rf~U dX ¼

I
SðXÞ

f ð~n � ~UÞdS; ð13Þ
where S(X) is the surface of the phase space volume and ~n its normal direction. Using expression (12), one
obtains the integral form of the conservative Vlasov equation (10)
oN
ot

¼ o

ot

Z
X
f dX ¼

Z
X

of
ot

dX ¼ �
I
SðXÞ

f ð~n � ~UÞdS; ð14Þ
Eq. (14) means that the rate of change of the number of particles inside a domain X equals the integral flux of f
through the surface of the domain S(X).

Using expression (11) one obtains the local form of the conservative Vlasov equation
of
ot

þr � ðf~UÞ ¼ of
ot

þ o

o~r
ðf �~vÞ þ o

o~v
f
~F
m

 !
¼ 0; ð15Þ
where~v and ~F =m are dependent on~r and~v, respectively, variables. Both the conservative form (15) and the
usually used advection form of the Vlasov equation (6) are equivalent as one can find out by carrying out
the partial differentiation in the conservative Vlasov equation (15) following the product rule
of
ot

þ~v � o
o~r

f þ
~F
m
� o
o~v

f þ f
o

o~r
~vþ o

o~v
�
~F
m

( )
¼ 0. ð16Þ
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Since for the Vlasov equation the phase space element is incompressible (the Liouville theorem applies)
o~v=o~r þ oð~F =mÞ=o~v ¼ ðr � ~UÞ ¼ 0 from Eq. (16) follows that advection and conservative form of the Vlasov
equation are equivalent.

In order to solve the Vlasov equation in its integral conservative form one also has to formulate suitable
initial and boundary conditions. The r.h.s. of Eq. (14) means that the distribution function f flows with the
phase space velocity ~U through the boundaries of a closed and connected domain X. Hence, the boundary
S(X) can be split into an inflow and an outflow part (the no-flow boundary is considered separately) defined
by:

� inflow: C� ¼ f~r;~v 2 SjUn < 0g;
� outflow: Cþ ¼ f~r;~v 2 SjUn > 0g.

A Dirichlet boundary condition for the conservative Vlasov equation can, therefore, be given as
ft;~r ¼ gðt;~RÞ for ðt;~RÞ 2 CðtÞ; ð17Þ

where C(t) is boundary of the phase space volume.

4. Finite volume discretization

In terms of the differential flux ~H ¼ f � ~U the integral form of the Vlasov equation (14) writes
o

ot

Z
X
f dX ¼ �

I
SðXÞ

~H~ndS. ð18Þ
Let us demonstrate the idea of our finite volume unsplit discretization for a simple 1D1V case (x,v) with a
rectangular boundary. We define the discretization control volumes (subdomains) introducing a rectangular
grid in the (x,v) 1D1V phase space. This breaks the simulation domain X down into Nx · Nv non-overlapping
subdomains (cells) Vi,j such that
X ¼
[Nx�Nv

i;j¼0

V i;j; ð19Þ
where Nx and Nv are the numbers of grid points in the x and v directions. Let us relate the distribution func-
tion fi,j to the center of a subdomain Vi,j while the fluxes are defined as flowing through the subdomain bound-
aries as depicted in Fig. 1 (shown are the integral fluxes G = �t,DSH(f)dSdt, see Eq. (24), instead of the
differential fluxes H). The volume of a subdomain (cell) Vi,j is given by [Dxi · Dvj] · [tn;tn+1], where
Dxi = xi+1/2 � xi� 1/2 and Dvj = vj+1/2 � vj� 1/2.

Let us introduce the averaged over the subdomain Vi,j distribution function fi,j at tn as
i,j-1

i-1,j

i-1,j-1

i+1,j-1

i+1,j

i+1,j+1G
i+1/2,j

i,j-1/2
G

tn

t
n

tn+1
f

n+1

n+1/2

n+1/2

x
i-1/2 x i+1/2

v j-1/2

v j+1/2

x
v

t

Fig. 1. Temporal–spatial subdomain structure of our FVD scheme.
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�f
n
i;j ¼

1

jV i;jj

Z
V i;j

f ð~r;~v; tnÞdV . ð20Þ
Then the integral conservative Vlasov equation in its form (18) can be expressed as
o�f
n
i;j

ot
¼ � 1

jV ijj

Z tnþ1

tn

I
oV ij

~Hi;j~ni;j dS dt; ð21Þ
where~ni;j denotes the outward directed normals of the subdomain (cell) boundary oVij. In our rectangular grid
geometry each subdomain Vij is bounded by four perpendicular sides DSi,j,b (where b = 1‚4). Hence, the sur-
face integral in (21) can be replaced by the sum over the fluxes through the four sides
I

oV i;j

~Hðf Þi;j~ni;j dS ¼
X4
b¼1

Z
DSi;j;b

~Hðf Þi;j~ni;j;b dS. ð22Þ
Eqs. (21) and (22) establish a discrete evolution equation for the mean values of the distribution function �f
n
i;j.

A finite volume method solves directly for the time advanced distribution function value. Hence, the discrete
value of the distribution at tn+1 can be obtained as (in the following we omit the average-overline, i.e.,
�f i;j ! fi;j)
f nþ1
i;j ¼ f n

i;j �
Dt
jV i;jj

X4
b¼1

G
nþ1

2
i;j;b. ð23Þ
In Eq. (23), we expressed the fluxes through the boundary segments DSi,j,b by their discrete integral values
Gnþ1=2

i;j;b which follow from Eqs. (21) and (22) as
Gnþ1=2
i;j;b ¼ 1

Dt

Z tnþ1

tn

Z
DS

~Hðf Þ~ni;j;b dS dt. ð24Þ
In order to obtain a second-order accuracy time discretization we approximate the flux function at the center
of each subdomain boundary at half the time step ðnþ 1

2
Þ. Using the midpoint rule for the time integration one

finds
Gi;j;b¼1;2 ¼ fGi�1
2;j
g; Gi;j;b¼3;4 ¼ fGi;j�1

2
g. ð25Þ
Each flux through a cell boundary depends on the cell to the left and on the cell to the right:
Giþ1
2;j;S

¼ gðGiþ1
2;j;L

;Giþ1
2;j;R

Þ. ð26Þ
The determination of the flux through the subdomain (cell) boundaries dVi,j corresponds to the solution of a
Riemann problem. At the beginning of each time step the fluxes set up an unsteady Riemann problem at each
subdomain (cell) boundary. The solution of the Riemann problem determines the domain of dependence of
each subdomain. Due to the causality principle one can approximate the solution at each time step inside
the domain of dependence. For this purpose, we use the first-order Godunov flux functions [8]
Giþ1=2;j ¼ Uþ
x fi;j þ U�

x fiþ1;j; ð27Þ
where
Uþ
x ¼ maxðUx; 0Þ; U�

x ¼ minðUx; 0Þ ð28Þ

to obtain an upwind scheme. A numerical solution of the discrete conservative Vlasov equation (23), using
first-order fluxes defined by Eqs. (27) and (28), would provide a first-order scheme with the stability condition
[12]
v
Dt
Dx

����
����þ F

m
Dt
Dv

����
����51. ð29Þ
We enhance the accuracy of our scheme to the second order by introducing a more sophisticated approxima-
tion of the averaged quantities inside the subdomain using a piecewise-linear approximation based on a Taylor
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series expansion of the subdomain boundary values for the determination of the fluxes inside the upwind cells.
Let us describe the second-order approximation taking the calculation of Giþ1

2;j
as an example (all other fluxes

are calculated in the same way, just interchange the indices i, j and x, v). We define the left and right side flux
function as: Giþ1

2;j;S
2 ðGiþ1

2;j;L
;Giþ1

2;j;R
Þ, where Giþ1

2;j
is obtained by solving the Riemann problem
Giþ1
2;j

¼ gðGiþ1
2;j;R

;Giþ1
2;j;L

Þ;
where
G
nþ1

2

iþ1
2;j;S

¼ Uþ
x f

n
i;j þ U�

x f
n
iþ1;j �

Dx
2

of
ox

þ Dt
2

of
ot

. ð30Þ
Substituting of/ot using the Vlasov equation (15) one obtains
Gi;j;S ¼ Uþ
x f

n
i;j þ U�

x f
n
iþ1;j �

Dx
2

of
ox

þ Dt
2

oHx

ox
þ oHv

ov

� �
ð31Þ
and, after some rearrangement, one finds, the second-order upwind flux function
Giþ1=2;j;S ¼ fiþk;j þ riþ1=2;j �
Dt
Dx

Ux
iþ1=2;j

� �
Hx

iþ1=2;j �
Dt
2

oHv

ov
; ð32Þ
where riþ1=2;j ¼ signðUx
iþ1

2;j
Þ. The first term in expression (32) provides a first-order upwind scheme. The middle

term provides second-order accuracy correction. The third is a transverse propagation term from the diago-
nally located subdomain.

As it is well known second-order schemes can cause un-physical oscillations which may lead to negative
values of the distribution function or even to numerical instabilities. To avoid such instabilities we limit the
physical flux Hx

iþ1
2;j
in the middle, the second (order) term of Eq. (32). The limiter function, that applies directly

to the derivatives, is given by
Hx
iþ1=2;j ¼ LimiterfQC

i;j;Q
R
i;j;Q

L
i;jg; ð33Þ
where Limiter is a non-linear function based on the gradient of the solution. Near steep gradients the flux lim-
itation reduces our method to a first-order upwind scheme. The central, right and left derivatives in the Limiter
function (33) are given by
QC
i;j ¼ fiþ1;j � fi�1;j; QR

i;j ¼ fiþ1;j � fi;j; QL
i;j ¼ fi;j � fi�1;j.
We successfully applied in our simulations the following flux limiter
LimiterfQC
i ;Q

R
i ;Q

L
i g ¼ min 1

2
jQC

i;jj; 2jQL
i;jj; 2jQR

i;jj
n o

; QR
i;jQ

L
i;j > 0.

0; otherwise.

(
ð34Þ
A limiter in the form (34) satisfies the maximum principle, i.e., it does not introduce new extrema. This guar-
antees the absolute preservation of a positive (positivity) value of the distribution function.

Let us now consider the transverse propagation term in the expression for discrete integral flux function
(32). We approximate it by choosing the Godunov function. If HT

i;jþ1=2 is the solution of the Riemann problem
projected along the v-direction with the left and right side expressions
ðHT
i;jþ1=2;L;H

T
i;jþ1

2;R
Þ ¼ ðUv

i;jþ1
2
f n
i;j;U

v
i;jþ1

2
f n
i;jþ1Þ; ð35Þ
then the transversal term in Eq. (32) can be written as
Dt
2

oHv

ov
¼ 1

2

Dt
Dv

HT
v;iþk;jþ1

2
� HT

v;iþk;j�1
2

� �
; ð36Þ
where k = 0, ±1 determine of the upwind subdomain.
Finally, after [12], the stability condition for the second-order scheme is given by



N.V. Elkina, J. Büchner / Journal of Computational Physics 213 (2006) 862–875 869
max v
Dt
Dx

����
����; F

m
Dt
Dv

����
����

� �
51. ð37Þ
5. Code validation of our new Vlasov solver

In order to validate our new Vlasov solver, we apply it to simulate the well known ion-acoustic (IA) plasma
instability. For an electrostatic perturbation, the IA instability can be considered in one spatial (x) and one
velocity space dimension (vx ! v), i.e. in 1D1V. In the simplest case the instability causes just electrostatic
oscillations in the x-direction (Ex ! ÆEæ + E). Hence, the Vlasov–Maxwell system of field equations (6)–(8)
can be reduced to a set of two one-dimensional Vlasov and an one-dimensional Ampère equation for the per-
turbed current (Jx ! ÆJæ + J), to which an external current Jext = ÆJæ is added. This external, average current
balances the average magnetic field ðr � h~Bi ¼ hJi ¼ J extÞ such that oÆEæ/ot = 0 [6]
ofa
ot

þ v
ofa
ox

þ 1

Ca

ofa
ov

¼ 0;
oE
ot

¼ �J þ J ext. ð38Þ
To complete a code let us formulate a consistent with the Vlasov solver discretization of the electrostatic Am-
père equation (38): Since the electric field enters the flux G

nþ1
2

i;j�1
2

it is appropriate to determine E also at each half-
time step tn+1/2. Hence, Ei,j±1/2 should be calculated as
E
nþ1

2

i;j�1
2

¼ E
n�1

2

i;j�1
2

� Dt � Jn
i;j�1

2
ð39Þ
while the current Jn
i;j�1

2
should be calculated synchronously with the advancement of the distribution function.

5.1. Parameters of the space-time grid

First let us discuss the optimum choice of the grid sampling. The maximum possible time step size is deter-
mined by the stability condition (37). The corresponding necessary Courant–Friedrich–Levy (CFL) condition
is CFL 6 1.

We choose the time step Dt determined in the (1D1V) phase space for both electrons and ions plasma spe-
cies in whole simulation domain in accordance with
Dt ¼ CFL �min
Dx

maxðvemax; vimaxÞ
; jCej �

Dve

Emax
x

� �
; jCij �

Dvi

Emax
x

� �	 

; ð40Þ
where vmax
e and vmax

i are the maximum velocities in the simulation box for the plasma species and Emax
x is the

maximum electric field. CFL = 0.8 is used for all simulation runs presented here.
The necessary condition for grid sampling in the real space is the of quasi-neutrality condition, which

requires a resolution of the Debye length kD = vte/xpe, where vte ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
T e=me

p
and Te is the electron temperature

in energy units
Dx < kD. ð41Þ

The choice of the number of spatial and velocity space Eulerian grid points for the numerical integration of the
discrete solution determines the smallest phase space filaments, which can be resolved. The choice of Dv deter-
mines, therefore, the smoothing, i.e., the minimum numerical dissipation in the system. The concrete choice of
the velocity space resolution, always depends on the problem studied. Dvi, for example, should be much smal-
ler than any physically relevant velocity space granulation.

Let us investigate the influence of the grid scales on the dissipative properties of our scheme. While the Vla-
sov equation itself is non-dissipative (Hamiltonian), (numerical) dissipation arises due to its discrete represen-
tation on an Eulerian grid. Once the forming microstructures (filaments) reach the mesh-size scale, any finer
filamentation becomes smoothed away numerically. At the same time, large scale structures are unaffected.
The evolution on these fine scales can be estimated from the solution of the free-streaming Vlasov equation,
Fourier transformed in the real space (f(v,x,t) ! f(v,k,t))
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f ðv; k; tÞ ¼ f ðv; k; 0Þeigv. ð42Þ

When g = kt reaches the inverse of Dv one cannot any more follow the further filamentation of f, the infor-
mation about which is lost. This takes place especially within D = g�1 = 1/kt of the resonance velocity, i.e.,
D is the characteristic width of the resonance. Only particles within D of the resonance velocity experience
a significant contribution to or deduction of its kinetic energy [15]. The linear stage ends at saturation. Sin-
gle-mode systems saturate when the electric field reaches an amplitude Esat for which the trapping frequency
is of the order of the linear growth rate c of a given instability
xt ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
eEsatk
me

s
’ c;
which can be derived solving the linear dispersion relation. The characteristic saturation time may be esti-
mated for an initial perturbation dE0, since Esat ¼ dE0e

ctsat , as
tsat ¼
1

c
ln

c2m
edE0

� �
.

Thus, the characteristic width of the resonance region at saturation may be estimated as
D ¼ 1

ktsat
¼ c

k lnðc2m=edE0Þ
; ð43Þ
which should be resolved by the velocity space grid
Dv � D. ð44Þ

A way to decrease the numerical dissipation without increasing the total number of grid cells is the use of a
non-uniform grid stretching which refined the mesh at places where the finest filaments are expected, i.e., near
resonances, while stretching it away from the resonances. This can be done when the main resonance region is
known. In our example this is the ion-acoustic wave velocity, the ion-sound speed cia ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
T e=M i

p
. Conse-

quently, we applied a stretching function
V str
i ¼ vmax sinhððvi � vresÞStr=vmaxÞ

sinhðStrÞ ; ð45Þ
where Str is the stretching factor, V str
i is the velocity value on the non-uniform grid and vi the velocity value on

the original, equally spaced grid, vres = cia and vmax is the maximum velocity considered. We perform simula-
tions with the non-equidistant distribution of velocity space grid points V str

i which concentrate near the reso-
nance velocity for simulation of the ion-acoustic turbulence (see Section 5.2). Fig. 2 depicts the electron
distribution function at an instantaneous moment of time on the non-uniformly stretched near the resonance
velocity space grid surface.

5.2. Triggered ion-acoustic instability

In order to physically validate our Vlasov solver we choose the problem of onset and saturation of an IA
instability in a system with an electron distribution function drifting against a background of a resting ion
distribution. We first modulated the electron distribution in space in order to trigger a whole spectrum of
unstable waves (this section), while we will discuss the results of a simulation of a spontaneous IA instability
in the following section.

In order to trigger a multimode IA instability we use electron and ion distribution functions given by:
fe ¼ ð1þ aeðxÞÞ
ffiffiffiffiffiffiffiffiffiffiffi
1

p � v2te

s
exp �ðve � vdeÞ2

2v2te

 !
;

fi ¼
ffiffiffiffiffiffiffiffiffiffiffi
1

p � v2ti

s
exp � v2i

2v2ti

� �
;

ð46Þ



Fig. 2. Filamented electron phase space obtained with Str = 2 on a stretched 512 · 512 grid (for a triggered ion-acoustic instability – see
Section 5.2).
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where vta ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
T a=ma

p
(Ta is the temperature) are the electron and ion thermal velocities, respectively, and vde is

the drift speed of the electrons as suggested by Arber and Vann [5]. We used for the perturbation of the initial
electron distribution function ae(x) the form function
aeðxÞ ¼ 0:01ðsinðxÞ þ sinð0:5xÞ þ sinð0:15xÞ þ sinð0:2xÞ þ cosð0:25xÞ þ cosð0:3xÞ þ cosð0:35xÞÞ. ð47Þ

Notice that, both distribution functions (46) are divided by the total number of particles (Na), i.e.,
Z 1

�1
fa dva ¼ 1. ð48Þ
Let us discuss the results of runs carried out for the following physical parameters:
Ci ¼ M i=me ¼ 1000; T i ¼ 0:5T e; T e ¼ 10 eV; vde ¼ 2vte. ð49Þ

The parameters of the numerical scheme were
Lx ¼ 0:1
c
xpe

� 120kD; vmax
e ¼ 8vte; vmax

i ¼ 8vti. ð50Þ
We used periodic boundary conditions in the real space. In the velocity space dimension we used Dirichlet
boundary condition (17) with constant value f on the velocity space boundary, determined by initial condition.

For a run with Nx = 512 · Nv = 512, the resulting evolution of the electron distribution, spatially averaged
over the box Lx, is shown in Fig. 3. For the physical parameters given by Eq. (49) ion-acoustic waves start to
grow. As can see in Fig. 3 considerable deformation of the drifting electron distribution space averaged



Fig. 3. Time evolution of the spatially averaged electron distribution function fe = Fe in the course of an ion-acoustic instability,
Nx · Nv = 512 · 512.
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function begins at about txpe = 150. The reason is that the growing ion sound waves obtain energy from the
drifting electron distribution and transfer energy to the ions via resonant interaction of the fluctuating electric
field with the particles. This leads to a deformation of the distribution functions of the electrons as shown in
Fig. 3, finally causing a transition from quasi-linear to strongly non-linear wave particle interactions after
about txpe = 200.

The loss of information, which characterizes the numerical diffusivity of the code, can be quantified by
means of the relative distribution function entropy
Srel ¼ ½SðtÞ � Sð0Þ�=Sð0Þ; where SðtÞ ¼ �
Z

f ln f dvdx. ð51Þ
Eq. (51) determines Srel in a way that it stays zero for a strictly Hamiltonian, non-dissipative system
(S(t) = constant), while it will monotonically grow for any discrete Eulerian grid based numerical scheme.
Therefore, the value of Srel quantifies the deviation from the ideal dissipationless state.

Let us compare the growth of Srel for simulation runs with different choices of a fixed Eulerian grids: Run1:
Nv · Nx = 128 · 256, Run2: Nv · Nx = 256 · 256, Run3: Nv · Nx = 512 · 512. The relative entropy evolution
in the course of these runs is depicted in Fig. 4. As one can see the numerical entropy is of the order of a few %
even for the most coarse grid Nv · Nx = 128 · 256. Srel decreases to even smaller values for finer fixed grids.
Fig. 4 depicts also the relative entropy for the stretched grid case (Str = 2) with Nv · Nx = 512 · 512 grid
points. Due to the stretching Str = 2 becomes much smaller in the linear and quasi-linear growth phase of
the instability, if compared to the run with the same number but equidistant grid points.

5.3. Spontaneous ion-acoustic instability

For further physical validation of our new conservative scheme we choose to simulate also a spontaneously
arising IA instability in a current carrying plasma. A spontaneous ion-acoustic instability is excited only if
vde > vcrit. The value of vcrit can be determined by solving the linear dispersion relation. Instead of imposing
an electron drift as in the case of the ion-acoustic instability considered in Section 5.2, we apply a constant
electric field to an initially unperturbed system of Maxwellian distributed electrons and ions. Since a Vlasov
code is noiseless we have to add fluctuations dfa to the distribution function as well
fa ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1

p � v2ta

s
exp �ðvaÞ2

v2ta

 !
� 1þ dfa

fa

� �
. ð52Þ
In our simulations, we have chosen a fluctuation amplitude at the thermal noise level. Initially, both electrons
and ions are accelerated in an external electric field Eext

0 . When their relative drift reaches the critical speed vcrit,
the plasma becomes unstable and ion-acoustic waves are generated. Omura et al. [16] investigated this problem
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Fig. 4. Relative entropy evolution in the ion-acoustic instability simulation for high-resolution fixed grids and a lower overall resolution
stretched grid.
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by means of their one-dimensional PIC code KEMPO1. For better comparison of the results, we use the same
ratio of ion to electron thermal velocities and apply the same external electric field strength
vti ¼ 0:0625vte; Eext
0 ¼ 0:01.
The other simulation parameters were
Ci ¼ M i=me ¼ 100; T i ¼ 0:4T e; T e ¼ 10 eV
while the parameters of the numerical scheme were
Lx ¼ c=xpe � 460kD; vmax
e ¼ 12vte; vmax

i ¼ 12vti.
The grid resolution of the simulation was Nx · Nv = 256 · 256.
As one can see in the upper panel of Fig. 5, after about txpe = 400 electric field fluctuations start to grow

strongly The lower panel of Fig. 5 shows that the instability starts as soon as the drift velocity reaches
vcrit = 2.3vte. After txpe = 400 and until txpe = 500, the strongly non-linear wave-particle resonant interaction
reduces the drift speed (Fig. 5, lower panel). Then the resonance condition is not fulfilled any more and the
electric field fluctuation energy decreases again, which allows the drift to grow further. Fig. 6 depicts the evo-
lution of the spatially averaged electron distribution showing the quasi- and non-linear formation of a plateau
in the electron distribution function. Our simulation results clearly indicate the long term stability of the new
unsplit conservative Vlasov solver, described in Section 4.

6. Summary and outlook

The usually used splitting schemes practically usually solve the Vlasov equations in its advection form,
where velocity and acceleration are considered as independent variables. Instead we have developed a conser-
vative unsplit numerical method solving the Vlasov equation in its conservative form. Our flux limiting finite



Fig. 5. Time evolution of the energy of the electric field fluctuations (upper panel) and of the average particle drift (current) velocity.

Fig. 6. Evolution of the spatially averaged electron distribution function fe = Fe in the course of the development of a spontaneous ion-
acoustic instability, Nx · Nv = 256 · 256.
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volume method maintains the positivity of the distribution function and guarantees the conservation of its
moments, high accuracy, efficiency and performance. Physically we validated our new method by applying
it to 1D1V simulations of both a triggered and a spontaneously excited ion-acoustic instability. For this sake,
we developed a Vlasov–Ampère code based on our new Vlasov solver. We have studied the growth of the
entropy of the solution caused by numerical truncation errors. We found that the entropy stays small even
in the highly non-linear stage of a multi-mode triggered ion-acoustic instability. We also showed how the
entropy can easily be further lowered by phase space grid stretching.
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Our conservative unsplit method can be generalized to higher dimensions as well as to the solution of the
relativistic Vlasov-equations in its conservative form. By applying a conservative Vlasov solver based on the
principles presented here in this paper it might be possible to overcome the difficulties arising in the simulation
of relativistic plasma instabilities [17].

References

[1] F.H. Hohl, M. Feix, Numerical experiments with a one-dimensional model for a self-gravitating star system, Astrophys. J. 147 (1964)
1164.

[2] A. Ghizzo, F. Huot, P. Bertrand, A non-periodic 2D semi-Lagrangian vlasov code for laser-plasma interaction on parallel computer,
J. Comput. Phys. 186 (2003) 47–69.

[3] C. Cheng, G. Knorr, The integration of the Vlasov equation in configuration space, J. Comput. Phys. 22 (1976) 330–351.
[4] A. Mangeney, F. Califano, C. Cavazzoni, P. Travnicek, A numerical scheme for the integration of the Vlasov–Maxwell system of

equations, J. Comput. Phys. 179 (2002) 495–538.
[5] T. Arber, R. Vann, A critical comparison of Eulerian-grid-based Vlasov solvers, J. Comput. Phys. 180 (2001) 339–357.
[6] R. Horne, M. Freeman, A new code for electrostatic simulation by numerical integration of the Vlasov and Ampère equations using

MacCormack�s method, J. Comput. Phys. 171 (2001) 182–200.
[7] F. Filbet, E. Sonnendrucker, P. Bertrand, Conservative numerical schemes for the Vlasov equation, J. Comput. Phys. 172 (2001) 166–

187.
[8] S.K. Godunov, Finite difference method for the computation of discontinuous solutions of the equations of fluid dynamics, Mat. Sb. 7

(1959) 271–306.
[9] J.P. Boris, D. Book, Flux-Corrected Transport I. SHASTA, a fluid transport algorithm that works, J. Comput. Phys. 11 (1973) 38–69.
[10] S.T. Zalesak, Fully multidimensional Flux-Corrected Transport algorithms for fluids, J. Comput. Phys. 31 (1979) 335–362.
[11] J. Boris, D. Book, Solution of continuity equations by the method of Flux-Corrected Transport, Adv. Res. Appl. 16 (1985) 85–128.
[12] P. Colella, Multidimensional upwind methods for hyperbolic conservation law, J. Comput. Phys. 87 (1991) 171–200.
[13] J. Saltzman, An unsplit 3D upwind method for hyperbolic conservation laws, J. Comput. Phys. 115 (1994) 153–168.
[14] J.O. Langseth, R.J. LeVeque, A wave propagation method for three-dimensional hyperbolic conservation laws, J. Comput. Phys. 165

(2000) 126–166.
[15] T. O�Neil, Collisionless damping of nonlinear plasma oscillations, Phys. Fluid 8 (12) (1965) 2255–2262.
[16] Y. Omura, W. Heikkila, T. Umeda, K. Ninomiya, H. Matsumoto, Particle simulation of response to an applied electric field parallel

to magnetic field lines, JGR 108 (A5) (2003) 1197.
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